(1) Herrada L. ROL DEL SISTEMA PREHOSPITALARIO EN EL MANEJO DEL SINDROME CORONARIO. Revista Médica Clínica Las Condes. 2017; 28(2): 267–72.
(2) Morciano G, Giorgi C, Bonora M, Punzetti S, Pavasini R, Wieckowski MR, et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol. 2015 Jan; 78: 142–53.
(3) Kim J-C, Son M-J, Woo S-H. Regulation of cardiac calcium by mechanotransduction: Role of mitochondria. Arch Biochem Biophys. 2018 Dec 1; 659: 33–41.
(4) Hong S, Lee J, Seo H-H, Lee CY, Yoo K-J, Kim S-M, et al. Na –Ca2 exchanger targeting miR-132 prevents apoptosis of cardiomyocytes under hypoxic condition by suppressing Ca2 overload. Biochem Biophys Res Commun. 2015; 460(4): 931–7.
(5) Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol. 2015 Jan; 78: 35–45.
(6) Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018 Apr; 15(4): 203–14.
(7) Kung G, Konstantinidis K, Kitsis RN. Programmed Necrosis, Not Apoptosis, in the Heart. Circ Res. 2011; 108(8): 1017–36.
(8) Hausenloy DJ, Yellon DM. Myocardial ischemia- reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013 Jan; 123(1): 92–100.
(9) Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005 Mar 31; 434(7033): 658–62.
(10) Salas MA, Valverde CA, Sánchez G, Said M, Rodriguez JS, Portiansky EL, et al. The signalling pathway of CaMKII-mediated apoptosis and necrosis in the ischemia/reperfusion injury. J Mol Cell Cardiol. 2010 Jun; 48(6): 1298–306.
(11) Sanchez G, Berrios D, Olmedo I, Pezoa J, Riquelme JA, Montecinos L, et al. Activation of Chymotrypsin-Like Activity of the Proteasome during Ischemia Induces Myocardial Dysfunction and Death. PLoS One. 2016 Aug 16; 11(8): e0161068.
(12) Pedrozo Z, Sánchez G, Torrealba N, Valenzuela R, Fernández C, Hidalgo C, et al. Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2010; 1802(3): 356–62.
(13) Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013 Sep; 62: 24–35.
(14) Zhang L, Wang Z, Wang D, Zhu J, Wang Y. CD8CD28 T cells might mediate injury of cardiomyocytes in acute myocardial infarction. Mol Immunol. 2018 Sep; 101: 74–9.
(15) Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. J Am Coll Cardiol. 2016 May 3; 67(17): 2050–60.
(16) Savvatis K, Pappritz K, Becher PM, Lindner D, Zietsch C, Volk H-D, et al. Interleukin-23 Deficiency Leads to Impaired Wound Healing and Adverse Prognosis After Myocardial Infarction. Circ Heart Fail. 2014; 7(1): 161–71.
(17) Seropian IM, Toldo S, Van Tassell BW, Abbate A. Anti-Inflammatory Strategies for Ventricular Remodeling Following ST-Segment Elevation Acute Myocardial Infarction. J Am Coll Cardiol. 2014; 63(16): 1593–603.
(18) Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal. 2015 May 1; 22(13): 1146–61.
(19) Buelvas Jiménez N, de Investigaciones Científicas IV, Useche RJS, de Investigaciones Científicas IV. Regulación del inflamasoma NLRP3: bioquímica y más allá de ella. IATREIA [Internet]. 2015; 28(2). A vailable from: http://dx.doi.org/10.17533/udea.iatreia.v28n2a07
(20) Toldo S, Mezzaroma E, McGeough MD, Peña CA, Marchetti C, Sonnino C, et al. Independent roles of the priming and the triggering of the NLRP3 inflammasome in the heart. Cardiovasc Res. 2015 Feb 1; 105(2): 203–12.
(21) Toldo S, Marchetti C, Mauro AG, Chojnacki J, Mezzaroma E, Carbone S, et al. Inhibition of the NLRP3 inflammasome limits the inflammatory injury following myocardial ischemia-reperfusion in the mouse. Int J Cardiol. 2016 Apr 15; 209: 215–20.
(22) Sun T, Dong Y-H, Du W, Shi C-Y, Wang K, Tariq M-A, et al. The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. Int J Mol Sci [Internet]. 2017 Mar 31; 18(4). A vailable from: http://dx.doi.org/10.3390/ijms18040745
(23) Miranda RC. MicroRNAs and ethanol toxicity. Int Rev Neurobiol. 2014; 115: 245–84.
(24) Wang S-S, Wu L-J, Li J-J-H, Xiao H-B, He Y, Yan Y- X. A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sci. 2018 Dec 15; 215: 170–81.
(25) Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA, York A, et al. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest. 2007 Nov; 117(11): 3198–210.
(26) Liang W, Guo J, Li J, Bai C, Dong Y. Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun. 2016 Sep 23; 478(3): 1416–22.