i

Call for Papers for the semi-thematic N° 67: (Re)defining rural territories, between the global South and North: actors, processes, scales.

Full papers are invited to be submitted via the journal's official platform by 15 March 2024.

For more information, please check this link

Cambios ambientales en el lago Böeckella entre 1958 y 2023, península Antártica

Authors

Abstract

La Península Antártica (PA) ha experimentado un rápido calentamiento en los últimos años, lo que ha provocado la degradación del permafrost. En el norte de la PA, en Bahía Esperanza, el lago Böeckella ha experimentado eventos de drenaje rápidos y repentinos en las últimas décadas impulsados por procesos de termokarstía. Este estudio tiene como objetivo caracterizar los cambios ambientales en la Bahía Esperanza, en especial en el lago Böeckella entre 1958 y 2023. Se han utilizado datos limnológicos y sedimentológicos; datos de suministro de agua de deshielo; fotografías; teledetección; y datos de batimetría del lago Böeckella. El 29 de febrero de 1988, el lago tenía un área de 40236 m2 pero desde el 2010, el lago Böeckella se ha dividido en pequeños lagos, registrando un área total  de 20408 m2 en 2023. Una disminución de aproximadamente el 50%. Los datos batimétricos muestran que entre 1993 y 2013 el lago aumentó en profundidad, debido al colapso del terreno. Además, el alto nivel de escorrentía superficial en el área proveniente del glaciar Buenos Aires puede estar contribuyendo a un aumento de materia orgánica e inorgánica que ingresa al lago Böeckella, así como a otros cambios limnológicos. El lago Böeckella ha sufrido cambios a lo largo de los años debido al deshielo del permafrost y a la intensidad de la erosión termokarstica provocada por el aumento de la temperatura del aire registrado en los últimos años. Sin embargo, las interferencias antropogénicas afectan fuertemente la dinámica del lago.

Keywords:

permafrost, sensores remotos, thermokarst

References

Anthony, K., Zimov, S., Grosse, G., et al. (2014). A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452–456. https://doi.org/10.1038/nature13560

Arp, C. D., Jones, B. M., Lu, Z., & Whitman, M. S. (2012). Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska. Geophysical Research Letters, 39, L16503. https://doi.org/10.1029/2012GL052518

Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., et al. (2019). Permafrost is warming at a global scale. Nature Communications, 10, 264. https://doi.org/10.1038/s41467-018-08240-4

Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K., & Nieuwendam, A. (2013). Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100, 215-223.

Brosius, L. S., et al. (2012). Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH₄ during the last deglaciation. Journal of Geophysical Research: Biogeosciences, 117, G01022.

Bouchard, F., MacDonald, L. A., Turner, K. W., Thienpont, J. R., Medeiros, A. S., Biskaborn, B. K., Korosi, J., Hall, R. I., Pienitz, R., & Wolfe, B. B. (2017). Paleolimnology of thermokarst lakes: A window into permafrost landscape evolution. Arctic Science, 3(2), 91–117. https://doi.org/10.1139/as-2016-0022

Cape, M. R., Vernet, M., Skvarca, P., Marinsek, S., Scambos, M., & Domack, E. (2015). Foehn winds link climate-driven warming to ice shelf evolution in Antarctica. Journal of Geophysical Research: Atmospheres, 120(11), 37–11057. https://doi.org/10.1002/2015JD023465

Chen, X., Cui, P., Li, Y., Yang, Z., & Qi, Y. (2007). Changes in glacial lakes and glaciers of post-1986 in the Poiqu River basin, Nyalam, Xizang (Tibet). Geomorphology, 88(3–4), 298–311.

Coulombe, S., Fortier, D., Bouchard, F., Paquette, M., Charbonneau, S., Lacelle, D., Laurion, I., & Pienitz, R. (2022). Contrasted geomorphological and limnological properties of thermokarst lakes formed in buried glacier ice and ice-wedge polygon terrain. The Cryosphere, 16, 2837–2857. https://doi.org/10.5194/tc-16-2837-2022

Custodio E. & M. R. Llamas, (1983). Hidrología Subterránea. Editorial Omega.

Drago, E. & A. Paira, (1987). Informe de la campaña antártica de verano 1986/87. Instituto Antártico Argentino, Buenos Aires.

Ermolin, E. (2003). Primera experiencia en diseño y construcción de un dique en permafrost Antártico: Lago Boeckella, Bahía Esperanza. Contribuciones del Instituto Antártico Argentino, 537, 1–41.

Ermolin E., (2005) Dique en Permafrost antártico con Termosifones de Convección Liquida (Lago Boeckella, Bahía Esperanza). Revista ASAGAI (Asociación Argentina de Geología Aplicada a la Ingeniería y Ambiente) Ejemplar N°21, 1-23 pp

Ermolin, E. (2009). Permafrost y hielos subterráneos en el sector norte de la Península Antártica. In A. A. Busso (Ed.), Fundación de Historia Natural Félix de Azara. Buenos Aires: Fundación de Historia Natural Félix de Azara.

Ermolin E.,& Silva Busso A. (2006). Mapa y caracterización geocriológica del área de la Base Esperanza, Península Antártica Tercer congreso de la Ciencia Cartográfica y X Semana Nacional de la Cartografía, 26 -29 de junio del 2006. Trabajo 64. Ciudad Autónoma de Buenos Aires

Ermolin E., & Silva Busso, A. (2007). Desarrollo de Termokarst y Aguas Subterráneas en Bahía Esperanza, Península Antártica. Actas del VI° Simposio Argentino y III° Latinoamericano sobre Investigaciones Antárticas CD-ROM. Resumen Expandido N° GEORE808, 4pp.

Fountain, A. G., Levy, J. S., Gooseff, M. N., & Van Horn, D. (2014). The McMurdo Dry Valleys: A landscape on the threshold of change. Geomorphology, 225, 25-35.

González-Herrero, S., Barriopedro, D., Trigo, R. M., et al. (2022). Climate warming amplified the 2020 record-breaking heatwave in the Antarctic Peninsula. Communications Earth & Environment, 3(122). https://doi.org/10.1038/s43247-022-00450-5

Guglielmin, M. (2012). Advances in permafrost and periglacial research in Antarctica: A review. Geomorphology, 155–156, 1–6. https://doi.org/10.1016/j.geomorph.2011.10.001

Guglielmin, M., & Vieira, G. (2014). Permafrost and periglacial research in Antarctica: New results and perspectives. Geomorphology, 225, 1-3. https://doi.org/10.1016/j.geomorph.2014.05.014

Grosse, G., Jones, B., & Arp, C. (2013). Thermokarst lakes, drainage, and drained basins. In Treatise on geomorphology. Edited by J.F. Shroder. Academic Press, San Diego, Calif. pp. 325–353.

Grosse, G., Romanovsky, V., Jorgenson, T., Anthony, K. W., Brown, J., & Overduin, P. P. (2011). Vulnerability and feedbacks of permafrost to climate change. Eos Transactions American Geophysical Union, 92(9), 73.

Heslop, J. K., Walter Anthony, K. M., Sepulveda-Jauregui, A., Martinez-Cruz, K., Bondurant, A., Grosse, G., & Jones, M. C. (2015). Thermokarst lake methanogenesis along a complete talik profile, Biogeosciences, 12, 4317–4331, https://doi.org/10.5194/bg-12-4317-2015

Heslop, J. K., Walter Anthony, K. M., Winkel, M., Sepulveda-Jauregui, A., Martinez-Cruz, K., Bondurant, A., Grosse, G., & Liebner, S. (2020). A synthesis of methane dynamics in thermokarst lake environments. Earth-Science Reviews, 210, 103365. https://doi.org/10.1016/j.earscirev.2020.103365

Hinkel, K. M., Sheng, Y., Lenters, J. D., Lyons, E. A., Beck, R. A., Eisner, W. R., & Wang, J. (2012). Thermokarst lakes on the Arctic Coastal Plain of Alaska: Geomorphic controls on bathymetry. Permafrost and Periglacial Processes, 23(3), 218-230. https://doi.org/10.1002/ppp.1744

Hrbáček, F., Oliva, M., Hansen, C., Balks, M., O'Neill, T. A., de Pablo, M. A., Ponti, S., Ramos, M., Vieira, G., Abramov, A., Pastíriková, L. K., Guglielmin, M., Goyanes, G., Rocha Francelino, M., Schaefer, C., & Lacelle, D. (2023). Active layer and permafrost thermal regimes in the ice-free areas of Antarctica. Earth-Science Reviews, 242, 104458. https://doi.org/10.1016/j.earscirev.2022.104458

Izaguirre, I., Allende, L. & Schiaffino, R. M. (2021) Phytoplankton in Antarctic lakes: biodiversity and main ecological features. Hydrobiologia 848, 177–207. 10.1007/s10750-020-04306-x

Izaguirre, I., & Almada, P. (2001). Cambios en las características limnológicas y en biomasa fitoplanctónica del lago Boeckella (Bahía Esperanza) asociados al brusco descenso en su nivel hidrométrico. Contrib Inst Antar Argentino 533, 1–6.

Izaguirre, I., Mataloni, G., Vinocur, A. & Tell, G. (1993). Temporal and spatial variations of phytoplankton from Boeckella Lake (Hope Bay, Antarctic Peninsula). Antarctic Science 5(2)137-141.

Izaguirre, I., Pizarro, H., Allende, L. et al. (2012). Responses of a Maritime Antarctic lake to a catastrophic draining event under a climate change scenario. Polar Biology, 35, 231–239.

Jin, H., & Ma, Q. (2021). Impacts of Permafrost Degradation on Carbon Stocks and Emissions under a Warming Climate: A Review. Atmosphere, 12, 1425. https://doi.org/10.3390/atmos12111425

Jones, B. M., Grosse, G., Arp, C. D., Jones, M. C., Anthony, K. M. W., & Romanovsky, V. E. (2011). Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. Journal of Geophysical Research: Biogeosciences, 116. https://doi.org/10.1029/2011JG001827

Kokelj, S. V., & Jorgenson, M. T. (2013). Advances in thermokarst research. Permafrost and Periglacial Processes, 24(2), 108-119. https://doi.org/10.1002/ppp.1779

Koerner, R. M. (1961). Glaciological observations in Trinity Peninsula, Graham Land, Antarctica. Journal of Glaciology, 3(30), 1063–1074. https://doi.org/10.3189/S0022143000017470

Lantz, T. C., & Turner, K. W. (2015). Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon. Journal of Geophysical Research: Biogeosciences, 120, 513–524. https://doi.org/10.1002/2014JG002798

Lesi, M., Nie, Y., Shugar, D. H., Wang, J., Deng, Q., Chen, H., & Fan, J. (2022) Landsat- and Sentinel-derived glacial lake dataset in the China–Pakistan Economic Corridor from 1990 to 2020, Earth Syst. Sci. Data, 14, 5489–5512, doi: 10.5194/essd-14-5489-2022

Levy, J., Fountain, A., Dickson, J. et al. (2013) Accelerated thermokarst formation in the McMurdo Dry Valleys, Antarctica. Scientific Reports – Nature,3, 2269. https://doi.org/10.1038/srep02269

Levy, J., Fountain, A., Obryk, M., Telling, J., Glennie, C., Pettersson, R., Gooseff, M., & Van Horn, D. (2018). Decadal topographic change in the McMurdo Dry Valleys of Antarctica: Thermokarst subsidence, glacier thinning, and transfer of water storage from the cryosphere to the hydrosphere. Geomorphology, 323, 80-97. https://doi.org/10.1016/j.geomorph.2018.09.012

Liu, S. Y., Wu, T. H., Wang, X., et al. (2020). Changes in the global cryosphere and their impacts: A review and new perspective. Sciences in Cold and Arid Regions, 12(6), 343–354. https://doi.org/10.3724/SP.J.1226.2020.00343

López-Martínez, J., Serrano, E., Schmid, T., Mink, S., & Linés, C. (2012). Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155–156, 62–79. https://doi.org/10.1016/j.geomorph.2012.04.014

Martín-Serrano, A., Montes, M., Nozal, F., & Del Valle, R. A. (2005). Geomorfología de la costa austral de Bahía Esperanza (Península Antártica). Geogaceta, 38, 95–98.

Martín-Serrano, A., Nozal, F., & Montes, M. (2019). 5-Geomorfología. In M. Montes, F. Nozal, & R. A. del Valle (Eds.), Geología y Geomorfología de Bahía Esperanza (pp. 95–142). Serie Cartográfica Geocientífica Antártica; 1:10.000, 1ª edición. Madrid: Instituto Geológico y Minero de España; Buenos Aires: Instituto Antártico Argentino.

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714

Michiel H. in 't Zandt, Liebner, S., & Welte, C. U. (2020). Roles of thermokarst lakes in a warming world. Nature Reviews Earth & Environment, 28(9), 769-779.

Montes M., F. Nozal, R. Del Valle, A. Martín-Serrano, N. Heredia, G. Gallastegui, L. González-Menéndez, P. Valverde, A. Cuesta, L.R. Rodríguez Fernández, D. Gómez Izquierdo Y J. Lusky. (2019). Geología y Geomorfología de Bahía Esperanza. Serie Cartográfica Geocientífica Antártica Mapas Geológico y Geomorfológico y texto suplementario. IGME-IAA, Madrid.

Moreno L., A. Silva Busso, P. Scravaglieri, E. Ermolin, J.J. Durán, J. López-Martínez. (2014). Efectos de la Antropización sobre el Lago Böeckella (Península Antártica). XIII Reunión de la Sociedad Española de Geomorfología del 9 al 12 de septiembre (pp. 519-522). “Aplicando la Geomorfología”, Cáceres, España.

Morgenstern, A., Overduin, P. P., Günther, F., et al. (2021). Thermo-erosional valleys in Siberian ice-rich permafrost. Permafrost and Periglacial Processes, 32(1), 59–75. https://doi.org/10.1002/ppp.2087

Murton, J. B. (2009). Global warming and thermokarst. In R. Margesin (Ed.), Permafrost Soils (Vol. 16, pp. 185–203). Springer. https://doi.org/10.1007/978-3-540-69371-0_13

Murton, J. B. (2021). Permafrost and climate change. In T. M. Letcher (Ed.), Climate Change (3rd ed., pp. 281-326). Elsevier.

Nitzbon, J., Westermann, S., Langer, M., et al. (2020). Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nature Communications, 11, 2201. https://doi.org/10.1038/s41467-020-15725-8

Oliva, M., & Ruiz-Fernández, J. (2015). Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surface Processes and Landforms, 40(9), 1227-1238. https://doi.org/10.1002/esp.371

Olefeldt, D., Goswami, S., Grosse, G., et al. (2016). Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043. https://doi.org/10.1038/ncomms13043

Olthof, I., Fraser, R. H., & Schmitt, C. (2015). Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sensing of Environment, 168, 194-204. https://doi.org/10.1016/j.rse.2015.07.001

Pereira, T. T. C. (2012). Solos de Hope Bay, Península Antártica (Doctoral thesis). Universidade Federal de Viçosa.

Pizarro, H., Allende, L., & Bonaventura, S.M. (2004). Littoral epilithon of lentic waterbodies at Hope Bay, Antarctic Peninsula: biomass variables in relation to environmental conditions. Hydrobiologia 529, 237-250. 10.1007/s10750-004-6419-1

Poeiras, L. M. (2010). Vegetação e ambientes em Lions Rump e Hope Bay, Antártica Marítima (Master's dissertation). Universidade Federal de Viçosa.

Qin, D., & Ding, Y. (2010). Key issues on cryospheric changes, trends and their impacts. Advances in Climate Change Research, 1. https://doi.org/10.3724/SP.J.1248.2010.00001

Raj, K. B. G., & Kumar, K. V. (2016). Inventory of glacial lakes and its evolution in Uttarakhand Himalaya using time series satellite data. Journal of the Indian Society of Remote Sensing, 44, 959–976.

Revich, B. A., Eliseev, D. O., & Shaposhnikov, D. A. (2022). Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation. Atmosphere, 13(4), 532. https://doi.org/10.3390/atmos13040532

Rosa, L. H., Ogaki, M. B., Lirio, J. M., et al. (2022). Fungal diversity in a sediment core from climate change impacted Boeckella Lake, Hope Bay, north-eastern Antarctic Peninsula assessed using metabarcoding. Extremophiles, 26(16). https://doi.org/10.1007/s00792-022-01264-1

Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: A case study of lake burdur, Turkey. Journal of Taibah University for Science, 11, 381–391. doi:10.1016/j.jtusci.2016.04.005

Sarwar, M., & Mahmood, S. (2024). Exploring potential glacial lakes using geo-spatial techniques in Eastern Hindu Kush Region, Pakistan. Natural Hazards Research, 4(1), 56-61. https://doi.org/10.1016/j.nhres.2023.07.003

Schaefer, K., et al. (2014). The impact of climate change on permafrost thaw and the release of greenhouse gases. Environmental Research Letters, 9, 085003.

Schaefer, C.E.G., Costa Pereira, T.T., Ker, J.C., Carreiro Almeida, I.C., Bello Simas, F.N., Soares de Oliveira, F., Corrêa, G.R. & Vieira, G. (2015), Soils and Landforms at Hope Bay, Antarctic Peninsula: Formation, Classification, Distribution, and Relationships. Soil Science Society of America Journal, 79: 175-184. https://doi.org/10.2136/sssaj2014.06.0266

Schaefer, C. E. G. R., Pereira, T. T. C., Almeida, I. C. C., Michel, R. F. M., Corrêa, G. R., Figueiredo, L. P. S., & Ker, J. C. (2017). Penguin activity modifies the thermal regime of active layer in Antarctica: A case study from Hope Bay. CATENA, 149(Part 2), 582-591. https://doi.org/10.1016/j.catena.2016.11.014

Scravaglieri, P, (2021). Geocriología e Hidrogeología de Bahía Esperanza, Península Antártica. FCEN-UBA. Trabajo Final de Licenciatura (Inédito).

Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., Downie, R., Edwards, T., Hubbard, B., Marshall, G., Rogelj, J., Rumble, J., Stroeve, J., & Vaughan, D. (2019). The Antarctic Peninsula Under a 1.5°C Global Warming Scenario. Frontiers in Environmental Science, 7, 465700. https://doi.org/10.3389/fenvs.2019.00102

Smith, S. L., O’Neill, H. B., Isaksen, K., et al. (2022). The changing thermal state of permafrost. Nature Reviews Earth & Environment, 3, 10–23. https://doi.org/10.1038/s43017-021-00240-1

Sotille, M. E., Bremer, U. F., Vieira, G., Velho, L. F., Petsch, C., Auger, J. D., & Simões, J. C. (2022). UAV-based classification of maritime Antarctic vegetation types using GEOBIA and random forest. Ecological Informatics, 71, 101768. https://doi.org/10.1016/j.ecoinf.2022.101768

Sotille, M. E., Bremer, U. F., Vieira, G., Velho, L. F., Petsch, C., & Simões, J. C. (2020). Evaluation of UAV and satellite-derived NDVI to map maritime Antarctic vegetation. Applied Geography, 125, 102322. https://doi.org/10.1016/j.apgeog.2020.102322

Sudman, Z., Gooseff, M. N., Fountain, A. G., Levy, J. S., Obryk, M. K., & Van Horn, D. (2017). Impacts of permafrost degradation on a stream in Taylor Valley, Antarctica. Geomorphology, 285, 205-213. https://doi.org/10.1016/j.geomorph.2017.03.028

Swanger, K. M., & Marchant, D. R. (2007). Sensitivity of ice-cemented Antarctic soils to greenhouse-induced thawing: Are terrestrial archives at risk? Earth and Planetary Science Letters, 259(3–4), 347–359. https://doi.org/10.1016/j.epsl.2007.04.046

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023.

Turner, J., Barrand, N. E., Bracegirdle, T. J., Convey, P., Hodgson, D. A., Jarvis, M., Jenkins, A., Marshall, G., Meredith, M. P., Roscoe, H., Shanklin, J., French, J., Goosse, H., Guglielmin, M., Gutt, J., Jacobs, S., Kennicutt, M. C., Masson-Delmotte, V., Mayewski, P., Navarro, F., Robinson, S., Scambos, T., Sparrow, M., Summerhayes, C., Speer, K., & Klepikov, A. (2014). Antarctic climate change and the environment: An update. Polar Record, 50(1), 237–259. https://doi.org/10.1017/S0032247413000296

Walter, K. M., Smith, L. C., & Chapin, F. S. (2007). Methane bubbling from northern lakes: Present and future contributions to the global methane budget. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1856), 1657–1676. https://doi.org/10.1098/rsta.2007.2036

Vaughan, D. G., Marshall, G. J., Connolley, W. M., et al. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change, 60(3), 243–274. https://doi.org/10.1023/A:1026021217991

Wang, J., Chen, F., Zhang, M., & Yu, B. (2022). NAU-Net: A new deep learning framework in glacial lake detection. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. https://doi.org/10.1109/LGRS.2022.3165045

Zhang, M., Chen, F. & Tian, B. (2018). Glacial Lake Detection from GaoFen-2 Multispectral Imagery Using an Integrated Nonlocal Active Contour Approach: A Case Study of the Altai Mountains, Northern Xinjiang Province. Water, 10, 455. https://doi.org/10.3390/w10040455